Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
↳ QTRS
  ↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
+1(-(x, y), z) → +1(x, z)
+1(-(x, y), z) → -1(+(x, z), y)
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+1(-(x, y), z) → +1(x, z)
+1(-(x, y), z) → -1(+(x, z), y)
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
+1(-(x, y), z) → +1(x, z)
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
+1(-(x, y), z) → +1(x, z)
The remaining pairs can at least be oriented weakly.
none
Used ordering:  Polynomial interpretation [25,35]:
POL(-(x1, x2)) = 1/4 + (7/2)x_1   
POL(+1(x1, x2)) = (2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented:
none
↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.